US009354929B2

a2z United States Patent (10) Patent No.: US 9,354,929 B2
Hartmann (45) Date of Patent: May 31, 2016
(54) SHUT DOWN REAL TIME DOMAIN WHEN (56) References Cited
LAST REAL TIME PROCESS TERMINATES
ON A CORE U.S. PATENT DOCUMENTS
7,437,581 B2* 10/2008 Grochowski etal. ......... 713/320
(75) Inventor: Wolfgang Hartmann, Aurachtal (DE) 7.904.957 B2* 3/2011 Imai 726/22
2011/0072180 Al* 3/2011 Lee 710/260
(73) Assignee: SIEMENS 2011/0087815 Al 4/2011 Kruglick
AKTIENGESELLSCHAFT, Miinchen OTHER PUBLICATIONS
(DE) WolfJ. etal; RTOS Support for Parallel Execution of Hard Real-Time
. . . . . Applications on the MERASA Multi-Core Processor; Object/
(*) Notice: Subject to any disclaimer, the term of this Compoonent/Service-Oriented Real-Time Distributest Computing
patent is extended or adjusted under 35 (ISORC), 201013th IEEE Inernational Syposturn On, IEEE,
U.S.C. 154(b) by 183 days. Piscataway, NJ; pp. 193-201; ISBN: 978-1-4244-7083-9;
XP031827212; 2010; US; Apr. 5, 2010.
(21) Appl. No.: 14/118,026 Nojiri T. et al; Domain Partitioning Technology for Embedded
Multicore Processors; IEEE Micro, IEEE Serviece Center, Los
1. Alamitos, CA, US; vol. 29; No. 6; pp. 7-17; ISSN: 0272-1732;
(22) PCTFiled:  May 17, 2011 XP011299124; 2009; Nov. 1, 2009,
Schoeberl M. et al; Is Chip-Multiprocessing the End of Real-Time
(86) PCT No.: PCT/EP2011/057931 Scheduling?: Proceeding of the 9th Inernational Workshop on Worst-
§ 371 ()(1) Case Execution Time Analysis (WCET’2009), Satallite Event to
> ECRTS; 09, Dublin, Ireland; pp. 1-11; http://vesta. infromatik.
(), (4) Date:  Nov. 15, 2013 rwth-aachen.de/opus/vooltexte/2009/2288/pdf/Schoeber.2288 pdf;
XP055053724; 2009; Jun. 30, 2009.
(87) PCT Pub. No.: WQ02012/155963 Bettie E. et al; Hard Real-Time Performances in Multiprocessor-
Embedded Systems Using ASMP-Linux; Eurasip Journal on Embed-
PCT Pub. Date: Nov. 22, 2012 ded Systems; vol. 2008; pp. 1-16; ISSN: 1687-3955; DOL 10.1155/
2008/582648; XP55017567; 2008; Jan. 1, 2008.
(65) Prior Publication Data Pitter CH. et al; A Real-Time Java Chip-Multiprocessor; ACM Trans-
actions on Embeddes Computing Systems; vol. 10; No. 1; Article 9;
US 2014/0089930 A1~ Mar. 27, 2014 pp. 1-34; ISSN: 1539.9087; DOL 10.1145/1814539.1814548;
XP55042152; 2010; AT; Aug. 1, 2010.
(51) Int.ClL ) )
GOG6F 9/46 (2006.01) * cited by examiner
GOG6F 9/48 (2006.01) Primary Examiner — Wissam Rashid
Go6l’ 9/50 (2006.01) (74) Attorney, Agent, or Firm — Henry M. Feiereisen LLC
(52) US.CL
CPC oo GOGF 9/4881 (2013.01); Go6F 9/4887 7 . ABSTRACT o
(2013.01); GO6F 9/5061 (2013.01) A host system 1ncl.udes a plurality of cores and is des%gned
(58) Field of Classification Search such that one real-time process and one core-local timer is run

None
See application file for complete search history.

on each of the plurality of cores.

8 Claims, 2 Drawing Sheets

200
Host System
Real-time Application
209 210 211 212
213
Ve e
P — iy 204
e 4
J Real-time Extension
Timer 207 Clock 206 ZDBW
Core | & / "y Core
201 203 202




U.S. Patent May 31, 2016 Sheet 1 of 2 US 9,354,929 B2

FIG 1 100
/_/

Host System
Real-time Real-time

Application Application
108 1(ﬁ 107 106~ ﬁm ”ﬁ

AN 4N

9 NS

; Real-time Extension - 104

P4 \ S

105
il il
‘v? U U ‘\/’
Core L~ 101 v 102~ Core




U.S. Patent May 31, 2016 Sheet 2 of 2 US 9,354,929 B2

FIG 2 200
/_/
Host System
Real-time Application
209 210 211 212
213~ ¢ / \
A: : : vA 204
295 I J

1

Real-time Extension

N &4 B

v ¥ Y 7
Core - . Core
( /

7 e
201 203 202




US 9,354,929 B2

1
SHUT DOWN REAL TIME DOMAIN WHEN
LAST REAL TIME PROCESS TERMINATES
ON A CORE

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is the U.S. National Stage of International
Application No. PCT/EP2011/057931, filed May 17, 2011,
which designated the United States and has been published as
International Publication No. WO 2008/031536, pursuant to
35U.S.C. 119(a)-(d).

BACKGROUND OF THE INVENTION

The invention relates to a host system, especially a host
system having a real-time extension. Furthermore, the inven-
tion relates to a method for operating a host system. In addi-
tion, the invention relates to a program element and to a
computer-readable medium.

In the processor and hardware development of computers,
there is a general tendency towards ever-increased computing
power. In the past, this was carried out especially also by
means of increasing the clock frequencies of the processors.
However, there are limits set to increasing the computing
power of a processor by increasing the clock frequency espe-
cially due to the great increase in electrical power dissipation
(heat generation) today. An increase by means of parallel
processing (multicore system) becomes more economic. This
applies not only to service systems but also to all other com-
puter applications, e.g. also to industrial automation systems.

The demands in computing power increase continuously.
Integrating motion control, programmable controllers (PLC)
and human machine interfaces (HMI) in one device are a
suitable task for a multicore architecture. Virtualization tech-
nology is also a further impulse for utilizing such systems.

In reality, the multiplied theoretical computing power
(n-fold in the case of n cores) can never be achieved because
in the distribution of software, especially of a real-time kernel
from a single-core to a multi-core system, the old rules still
apply with respect to the performance of the overall system:

The familiar rule “MIPS=k*memory bandwidth” means
lastly that a high memory bandwidth requires local 1.2 caches
with a higher number of cores.

Local caches cause Amdahl’s Law to become effective
which, in one formulation, is:

If additional processors are used, the advantages (more

operating cycles) increase linearly, at the most,

the costs (conflicts of access, serialization etc.) increase

quadratically.

The performance of the system thus behaves as C(n)=axn-
bxn® where n number of processors or physical cores; this is
because local caches unavoidably mean a greater factor of'b.
This applies especially to the distribution of a real-time solu-
tion to a number of cores which are necessary as part of
real-time extensions. In the distribution of central common
data such as, e.g., lists, queues (especially queues which are
threaded twice, e.g. thread or timer management), counting is
also necessary for the case that no access conflicts (non-
contention case) occur, and this twice.

On the one hand, a spin lock (process synchronization,
protects jointly used resources against modifying access)
must be used as protection which, lastly, leads to an automatic
RMW (read-modify-write) command which is a very expen-
sive process with respect to the performance of the system
because the cache must be blocked. If an RFO (read for

15

20

30

40

45

2

ownership) cycle was also added, the negative influence on
the performances would become even greater.

Changes in the delay invalidate the corresponding infor-
mation in all other L2 caches and thus lead lastly to misses
which have a very strong influence on the performance.

There are various solutions in existence for real-time
extensions. One of these known solutions is Xenomai, a real-
time extension for Linux, a further one is IntervalZero RTX®,
a real-time extension for Windows.

Although, for example, Xenomai enables the real-time to
be distributed to a number of cores, this solution contains the
points described above which lead to a non-optimal perfor-
mance. Such a real-time extension is to be described diagram-
matically using the example of a standard kernel in multicore
environment by means of FIG. 2.

FIG. 2 shows a host system or real-time system 200 which
has a plurality of physical cores 201 and 202. Between the
cores 201 and 202, the possibility of cross-core notifications
is indicated diagrammatically by means of a double arrow
203, which notifications are used for providing signaling
paths in which transmitter and receiver entities are located in
different physical cores or processors are in different cores,
respectively. In this respect, an inter-processor interrupt (IPI)
is sent from one to the other core so that the function to be
executed is executed by the other core by proxy.

Block 204 shows diagrammatically an operating system
which provides a standard kernel having a real-time extension
205 integrated therein. The integrated real-time extension
manages the global resources of the real-time system by
means of a central accounting system. In this context, a syn-
chronization is performed during access to the internal global
data structures, using spin locks which are shown diagram-
matically as global lock 206 in FIG. 2.

Furthermore, the operating system 204 provides real-time
timers 207 and 208 for a plurality of real-time threads 209,
210,211 and 212 which belong to a real-time application 213.

In order to be able to meet fundamental real-time require-
ments, no central timer chip is used in known multicore
systems. The minimum is a core-specific timer management
as is implemented also in Xenomai. Furthermore, it can be
ensured, such as, for example, in the case of Xenomai, that in
the case of a thread migration, a possible timer request also
migrates. This makes it possible that, when a timer is trig-
gered, the real-time thread to be woken runs in the same core
which also has processed the timer interrupt.

Previously, however, no solutions are known which, in the
case of a real-time extension, ensure by means of an optimum
distribution of the software that a maximum performance
gain and minimum latency periods are the result of a real-time
solution distributed over a number of cores.

SUMMARY OF THE INVENTION

It is thus the object of the invention to create a host system
having a real-time extension which is optimized with regard
to the latency periods and/or the performance.

This object is achieved by a host system, a method for
operating a host system, a computer program element and by
a computer-readable medium as claimed in the independent
patent claims. Further embodiments are specified in the
dependent claims.

According to one exemplary aspect, a host system having a
plurality of cores is created which is configured in such a
manner that one real-time process and one core-local timer is
run on each of the plurality of cores.

That is to say, for each of the plurality of cores, a separate
real-time process is started. For each of the plurality of cores,



US 9,354,929 B2

3

a separate core-local timer is also started. Providing separate
core-local timers enables core-local signaling paths to be
used for the entire time management which, in turn, ensures
that no or at least fewer cross-core notifications, i.e. notifica-
tions between different cores of the host system are needed. In
particular, such core-local timers are used instead of a cen-
trally used timer, e.g. an HPET timer. For example, the core-
local timer can be implemented by means of an LAPIC timer
when using Linux as operating system.

According to another aspect of the invention, a method for
operating a host system having a real-time extension is cre-
ated, the host system having a plurality of cores, wherein the
method has operating one real-time process per core of the
plurality of cores and has operating one core-local timer per
core of the plurality of cores.

In particular, the term “operating” is also understood to
mean starting the real-time process and/or the core-local
timer.

According to another embodiment of the invention, a pro-
gram element is created which is configured in such a manner
that, when it is executed on a processor, it controls a method
according to an exemplary aspect of the invention.

According to a further exemplary aspect of the invention, a
computer-readable medium is created on which a computer
program is stored, the computer program being configured in
such a manner that, when it is executed on a processor, it
controls a method according to an exemplary aspect of the
invention.

A basic concept of one exemplary aspect is a host system
having a real-time extension in which it is made possible to
reduce the number of cross-core notifications or to eliminate
these entirely by providing at least one real-time process and
one core-local timer per core. For example, the number of
cross-core notifications can be reduced since time-manage-
ment by means of core-local signaling paths is provided for
when using core-local timers. This leads to the latencies and
to the overall performance of the host system being opti-
mized.

In the text which follows, exemplary embodiments of the
host system will be described. However, the corresponding
embodiments and features also apply to the method for oper-
ating a host system, the program element and the computer-
readable medium.

According to one exemplary embodiment, the host system
is configured in such a manner that core-local interrupt blocks
can be used.

In particular, these core-local interrupt blocks can be used
or provided instead of spin locks, or replace the latter. As a
result, with the partitioning of; in particular, data structures,
e.g. core-local queues for real-time run queue or for timer
handling, the use of spinlocks becomes superfluous. The use
of core-local interrupt blocks is thus sufficient or ensures
synchronization during an access to resources of the host
system which are installed or run on the host system.

According to another exemplary embodiment, the host
system is configured in such a manner that core-local signal-
ing paths are implemented.

In particular, core-local signaling paths may be understood
to mean that transmitter and receiving entities run along the
same core. For example, the core-local signaling paths can be
logical paths, i.e. formed by means of software. In particular,
interrupts of real-time assemblies are always linked to the
core on which the corresponding real-time application is also
running which is notified by the corresponding interrupt. As a
result, cross-core notifications become preventable.

According to another exemplary embodiment, the host
system is configured in such a manner that a process-specific

10

15

20

25

30

35

40

45

50

55

60

65

4

management of data structures is provided for, i.e. a process-
specific management or illustratively accounting of different,
hitherto typically globally managed data structures is pos-
sible. Examples of such data structures are, in particular, a
real-time task list or Futex header in the case where an oper-
ating system of the host system is a Linux operating system.
This may be an organizational measure for improving or
providing for a distribution of real-time processes or applica-
tions to a number of cores. Apart from a process-specific
management of data structures which is performed core-lo-
cally, it may be preferred or also necessary for the manage-
ment of all real-time processors in the overall system to
continue to use spin locks. In specific exemplary embodi-
ments, in particular, global data structures may still be pro-
tected by spin locks. In this context, it should be noted,
however, that these spin locks are not a component of real-
time critical tasks since access is only necessary when regis-
tering or shutting down a real-time process.

As aresult, it is possible to support a number of real-time
applications.

According to another exemplary embodiment, the host
system is configured in such a manner that on starting a
real-time-capable system by means of an associated real-
time-capable process, a real-time domain allocated to the
real-time-capable system is set up when the associated real-
time-capable process is the first real-time-capable process
which is started on the corresponding core of the host system.

A separation between the starting of a real-time process
and the setting up of a real-time domain takes place, espe-
cially a real-time domain can always be installed on demand.
In this context, the installation may be carried out only by the
first real-time process which is or has been started on the
corresponding core.

According to another exemplary embodiment, the host
system is configured in such a manner that a shutdown of the
real-time domain takes place when the last real-time process
is terminated, which is executed on the corresponding core.

According to a further exemplary embodiment, a migration
of a real-time process which runs on one of the plurality of
cores, to another one of the plurality of cores is prevented.

In particular, a real-time process or real-time-thread can
thus always be performed on the core which is specified by an
application or the real-time system for this real-time process
or real-time thread and thus an implicit migration of real-time
threads to another core is not supported. This will eliminate
load balancing, but will lead to a number of real-time-capable
processes occurring on a host system without real-time/per-
formance losses compared with a system having only one
real-time process. Such an elimination of migration, i.e. also
an elimination of a load balancing provides especially for an
enhancement of performance in that the management expen-
diture is reduced which is associated with cross-core notifi-
cations.

In summary, one exemplary aspect is seen in the fact that a
host system is created which enables a number of real-time-
capable processes to be created in a host system without
real-time/performance losses occurring compared with a sys-
tem having only one real-time process or these are reduced, at
least. The host system may be a Linux system or a Windows
system or a system on which an arbitrary other operating
system is installed. In particular, the optimized performance
is achieved by the fact that

for each core, a real-time process is started with an auto-
matic, but fixed allocation of the resources to the local flow
management of the threads, e.g. interrupt sources, timers,
lists, queues of the real-time process;



US 9,354,929 B2

5

core-local or core-specific timers are used instead of cen-
tral hardware timers;

starting up or shutting down of individual real-time pro-
cesses are performed instead of starting up or shutting down
the entire real-time system.

A real-time extension is provided for, having shorter response
times and faster thread communication/synchronization for
more than one process in the case of a multi-core application.

In particular, it is possible to reduce or to prevent impair-
ment of the performance by cross-core notifications. In the
prior art, these occur whenever a signaling path (from the
transmitter entity to the receiver entity) is not core-local or is
core-local since then a core sends an inter-processor interrupt
(IPI) to another core so that the function to be executed is
executed by proxy on the other core.

Advantageously, latencies are reduced which must be
observed during the distribution of interrupts. In particular, it
is prevented in the host system described or by the software
which runs on this host system that signaling by an interrupt
on a first processor (CPUX) leads to the thread to be woken
being located on a second processor (CPUy). It is thus pre-
vented that the notification does not take place directly but
must be initiated via a cross-core notification which would
lead to greater latencies.

In the prior art, furthermore, the necessity of a cross-core
notification can arise in the real-time thread communication
when transmitter and receiver thread are located in different
cores or when transmitter and receiver are located in different
cores during an I/O event. These cross-core notifications may
also be reducible or preventable in a host system according to
the exemplary aspect when core-local signal paths and/or
core-local timers are used. By providing core-local signal
paths and/or interrupt blocks, it is possible to reduce the
necessity or frequency of spin locks or global kernel locks by
means of which most of the data structures are protected,
which global kernel locks have a particularly negative effect
on the scalability of multi-core systems in the case when
many active cores are used for the real-time system.

According to the embodiment according to the exemplary
aspect, all queues remain core-local, and can be protected by
means of local interrupt blocks, in the case where a Linux
operating system is used, with the exception of POSIX mes-
sage queues. Since the POSIX message queues are used for
communication between processors (Linux and/or real-time),
these will continue to be synchronized also by using spin
locks. For Futexes, in the case of Linux, it may be applicable
that—as in the single-core solution—only private (process-
local) Futexes are supported. There will thus not be any
recalculation to physical addresses as a result of which sema-
phore functions become particularly fast.

BRIEF DESCRIPTION OF THE DRAWING

The aspects and exemplary embodiments explained above
and further exemplary aspects and exemplary embodiments
will become more comprehensible to the expert by means of
the exemplary embodiments explained in the text which fol-
lows. It should also be noted that features which are described
above in conjunction with a particular exemplary aspect or
exemplary embodiment can also be combined with other
exemplary aspects and exemplary embodiments.

FIG. 1 shows a diagrammatic representation of a host sys-
tem according to one exemplary embodiment.

FIG. 2 shows a diagrammatic representation of a host sys-
tem according to the prior art.

20

25

40

45

50

55

65

6

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The representations in the figures are diagrammatic. Iden-
tical or similar components or elements in the various figures
are provided with identical or similar reference symbols.

In the text which follows, an exemplary embodiment is
described by means of the Linux-based AuDis real-time
extension of multicore systems, wherein it is avoided in the
real-time extension by means of a dedicated distribution and
adaptation of the real-time software that the performance
does not increase optimally in the case of an increased num-
ber of cores. In principle, however, the principles can be
transferred to any other real-time extension in order to thus
optimize the real-time characteristic or the performance in the
case of a distributed real-time solution.

FIG. 1 shows a diagrammatic representation of a host sys-
tem 100 according to one exemplary embodiment. The host
system has a plurality of physical cores 101 and 102, only two
of which are shown for the sake of clarity. In contrast to the
host system shown in FIG. 2, no possibility of cross-core
notifications is indicated between cores 101 and 102. Block
104 diagrammatically shows an operating system, e.g. Linux
which provides a standard kernel with a real-time extension
105 integrated therein. The integrated real-time extension
manages the global resources of the real-time system by
means of a central accounting system.

Furthermore, FIG. 1 shows a plurality of real-time appli-
cations 106 and 107 within which a number of threads 108,
109, 110 and 111 can be processed. The real-time applica-
tions are a part of all regular processes which are processed.

It should be noted that the number of cores and the number
of'threads are naturally not restricted to the number shown but
can be adapted depending on embodiment and requirement.

In one exemplary embodiment, one real-time process is
provided per core. In a configuration such as it is shown
diagrammatically in FI1G. 1, it is also possible to extend a host
system to a number of real-time processes without having to
perform trade-offs in latency times/performance for the indi-
vidual process. If the host system has sufficient physical
cores, an exclusive core utilization by the real-time applica-
tion can also be set. Standard Linux and its user programs are
then banned from this core and the maximum latency period
will be reduced further since a change of address space is
prevented.

The measures described, i.e. the provision of core-local
interrupt blocks, core-local signal paths and/or core-local
timers are usually implemented in central routines and can
thus be changed easily as part of a kernel generation. Thus, if
maximum flexibility is demanded in the distribution of the
tasks and not the best-possible real-time characteristic, the
following allocations can also be achieved with little addi-
tional expenditure.

In a specific exemplary embodiment, a real-time process is
executed with threads in a number of cores. In this context, the
real-time process is started in one core, where a user, by
setting a core affinity for real-time threads can achieve that a
real-time thread is executed on a particular core. In this case,
local interrupt blocks may be sufficient if it is a matter of
synchronizing core-local queues. However, in this applica-
tion, signaling paths are passed which need synchronization
with spin locks for process-specific queues. In this context,
signaling paths can also be produced which are no longer
core-local such that the necessity of a cross-core notification
arises.

In another exemplary embodiment, a number of real-time
processes are implemented with threads in a number of cores.



US 9,354,929 B2

7

In this context, the most general case of distribution of a
real-time task is achieved. The real-time threads of areal-time
application are executed on any core but this characteristic
can be utilized by a number of real-time applications.

In the previous single-core solution on a Linux system,
checking for a necessary change in address space is only
necessary during the transition between Linux domain and
real-time domain. If, however, a number of real-time pro-
cesses are supported on one core, this check must also be
performed for the thread change within the real-time domain.
This scheme would also include the possibility that a number
of real-time processes can be started on a single-core system.

The execution of the invention is not restricted to these
applications and the system configurations mentioned further
above but also possible in a multiplicity of modifications
which are within the scope of competent action. It should also
be pointed out that reference symbols in the claims are not to
be considered to be restrictive and that the terms “have” or
“having” and similar terms do not exclude the presence of
other elements or steps. An enumeration as a number of
means or elements also does not exclude the possibility that
these means or elements can be designed as a single means or
element.

The invention claimed is:

1. A real-time-capable host system comprising a plurality
of cores, wherein each of the cores is configured to execute a
real-time process and a core-local timer,

wherein a real-time domain associated with real-time-ca-

pable system is set up when a real-time-capable system
is started by an associated real-time process, provided
that the associated real-time process is the first real-time
process started on a corresponding core of the real-time-
capable host system, and

wherein the real-time-capable host system is configured to

shut down the real-time domain when a last real-time
process processed on the corresponding core terminates.

2. The real-time-capable host system of claim 1, wherein
an inter-processor interrupt is sent from one core to another
core so as to enable a function to be executed by the one core
is executed by the other core.

3. The real-time-capable host system of claim 1, wherein
the core-local timers in each of the cores enable core-local
signaling paths to be used for time management.

4. The real-time-capable host system of claim 1, wherein
the real-time-capable host system is configured to enable
process-specific management of data structures.

5. The real-time-capable host system of claim 1, wherein
the real-time-capable host system is configured to prevent a
real-time process running on one of the plurality of cores from
migrating to another one of the plurality of cores.

6. A method for operating a real-time-capable host system
comprising a plurality of cores and a real-time extension, the
method comprising:

10

15

20

25

30

35

40

45

50

8

operating one real-time process in each core of the plurality
of cores; and
operating one core-local timer in each core of the plurality
of cores,
wherein a real-time domain associated with real-time-ca-
pable system is set up when a real-time-capable system
is started by an associated real-time process, provided
that the associated real-time process is the first real-time
process started on a corresponding core of the real-time-
capable host system, and
wherein the real-time-capable host system is configured to
shut down the real-time domain when a last real-time
process processed on the corresponding core terminates.
7. A computer program stored on a non-transitory com-
puter-readable medium, wherein when the computer program
is read into a memory of a real-time-capable host system
comprising a plurality of cores and a real-time extension and
executed by a processor of the real-time-capable host system,
the computer program causes the real-time-capable host sys-
tem to
operate one real-time process in each core of the plurality
of cores; and
operate one core-local timer in each core of the plurality of
cores,
wherein a real-time domain associated with real-time-ca-
pable system is set up when a real-time-capable system
is started by an associated real-time process, provided
that the associated real-time process is the first real-time
process started on a corresponding core of the real-time-
capable host system, and
wherein the real-time-capable host system is configured to
shut down the real-time domain when a last real-time
process processed on the corresponding core terminates.
8. A non-transitory computer-readable medium on which a
computer program is stored, wherein when the computer
program is read into a memory of a real-time-capable host
system comprising a plurality of cores and a real-time exten-
sion and executed by a processor of the real-time-capable host
system, the computer program causes the real-time-capable
host system to
operate one real-time process in each core of the plurality
of cores; and
operate one core-local timer in each core of the plurality of
cores,
wherein a real-time domain associated with real-time-ca-
pable system is set up when a real-time-capable system
is started by an associated real-time process, provided
that the associated real-time process is the first real-time
process started on a corresponding core of the real-time-
capable host system, and
wherein the real-time-capable host system is configured to
shut down the real-time domain when a last real-time
process processed on the corresponding core terminates.

#* #* #* #* #*



